/en/algebra-topics/order-of-operations/content/
Exponents are numbers that have been multiplied by themselves. For instance, 3 · 3 · 3 · 3 could be written as the exponent 34: the number 3 has been multiplied by itself 4 times.
Exponents are useful because they let us write long numbers in a shortened form. For instance, this number is very large:
1,000,000,000,000,000,000
But you could write it this way as an exponent:
1018
It also works for small numbers with many decimal places. For instance, this number is very small but has many digits:
.00000000000000001
It also could be written as an exponent:
10-17
Scientists often use exponents to convey very large numbers and very small ones. You'll see them often in algebra problems too.
As you saw in the video, exponents are written like this: 43 (you'd read it as 4 to the 3rd power). All exponents have two parts: the base, which is the number being multiplied; and the power, which is the number of times you multiply the base.
Because our base is 4 and our power is 3, we’ll need to multiply 4 by itself three times.
43 = 4 ⋅ 4 ⋅ 4 = 64
Because 4 · 4 · 4 is 64, 43 is equal to 64, too.
Occasionally, you might see the same exponent written like this: 5^3. Don’t worry, it’s exactly the same number—the base is the number to the left, and the power is the number to the right. Depending on the type of calculator you use—and especially if you’re using the calculator on your phone or computer—you may need to input the exponent this way to calculate it.
How would you simplify these exponents?
71 70
Don’t feel bad if you’re confused. Even if you feel comfortable with other exponents, it’s not obvious how to calculate ones with powers of 1 and 0. Luckily, these exponents follow simple rules:
How would you solve this problem?
22 ⋅ 23
If you think you should solve the exponents first, then multiply the resulting numbers, you’re right. (If you weren’t sure, check out our lesson on the order of operations).
How about this one?
x3 / x2
Or this one?
2x2 + 2x2
While you can’t exactly solve these problems without more information, you can simplify them. In algebra, you will often be asked to perform calculations on exponents with variables as the base. Fortunately, it’s easy to add, subtract, multiply, and divide these exponents.
When you’re adding two exponents, you don’t add the actual powers—you add the bases. For instance, to simplify this expression, you would just add the variables. You have two xs, which can be written as 2x. So, x2+x2 would be 2x2.
x2 + x2 = 2x2
How about this expression?
3y4 + 2y4
You're adding 3y to 2y. Since 3 + 2 is 5, that means that 3y4 + 2y4 = 5y4.
3y4 + 2y4 = 5y4
4r7 + 9r7
You can never add any of these as they’re written. This expression has variables with two different powers:
4r3 + 9r8
This one has the same powers but different variables, so you can't add it either:
4r2 + 9s2
Subtracting exponents works the same as adding them. For example, can you figure out how to simplify this expression?
5x2 - 4x2
5-4 is 1, so if you said 1x2, or simply x2, you’re right. Remember, just like with adding exponents, you can only subtract exponents with the same power and base.
5x2 - 4x2 = x2
Multiplying exponents is simple, but the way you do it might surprise you. To multiply exponents, add the powers. For instance, take this expression:
x3 ⋅ x4
The powers are 3 and 4. Because 3 + 4 is 7, we can simplify this expression to x7.
x3 ⋅ x4 = x7
What about this expression?
3x2 ⋅ 2x6
The powers are 2 and 6, so our simplified exponent will have a power of 8. In this case, we’ll also need to multiply the coefficients. The coefficients are 3 and 2. We need to multiply these like we would any other numbers. 3⋅2 is 6, so our simplified answer is 6x8.
3x2 ⋅ 2x6 = 6x8
You can only simplify multiplied exponents with the same variable. For example, the expression 3x2⋅2x3⋅4y2 would be simplified to 24x5⋅y2. For more information, go to our Simplifying Expressions lesson.
Dividing exponents is similar to multiplying them. Instead of adding the powers, you subtract them. Take this expression:
x8 / x2
Because 8 - 2 is 6, we know that x8/x2 is x6.
x8 / x2 = x6
What about this one?
10x4 / 2x2
If you think the answer is 5x2, you’re right! 10 / 2 gives us a coefficient of 5, and subtracting the powers (4 - 2) means the power is 2.
Sometimes you might see an equation like this:
(x5)3
An exponent on another exponent might seem confusing at first, but you already have all the skills you need to simplify this expression. Remember, an exponent means that you're multiplying the base by itself that many times. For example, 23 is 2⋅2⋅2. That means, we can rewrite (x5)3 as:
x5⋅x5⋅x5
To multiply exponents with the same base, simply add the exponents. Therefore, x5⋅x5⋅x5 = x5+5+5 = x15.
There's actually an even shorter way to simplify expressions like this. Take another look at this equation:
(x5)3 = x15
Did you notice that 5⋅3 also equals 15? Remember, multiplication is the same as adding something more than once. That means we can think of 5+5+5, which is what we did earlier, as 5 times 3. Therefore, when you raise a power to a power you can multiply the exponents.
Let's look at one more example:
(x6)4
Since 6⋅4 = 24, (x6)4 = x24
x24
Let's look at one more example:
(3x8)4
First, we can rewrite this as:
3x8⋅3x8⋅3x8⋅3x8
Remember in multiplication, order does not matter. Therefore, we can rewrite this again as:
3⋅3⋅3⋅3⋅x8⋅x8⋅x8⋅x8
Since 3⋅3⋅3⋅3 = 81 and x8⋅x8⋅x8⋅x8 = x32, our answer is:
81x32
Notice this would have also been the same as 34⋅x32.
Still confused about multiplying, dividing, or raising exponents to a power? Check out the video below to learn a trick for remembering the rules:
/en/algebra-topics/negative-numbers/content/